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in MoS2/GFNO heterostructure 

 
Owing to the nature of the metal/TMD interface, the contact geometry and energy level permutation 

play a key role in determining metal/TMD resistance [1][2]. Although the simulation shows zero Schottky barrier 
contacts with the 2H-1T’ phase engineering [3], phase transition in MoS2 have been only induced by thermal or 
chemical doping [4] [5][6]. It still lacks reliable methods to control the phase transition of MoS2. In this work, we 
come across the idea using ferroelectric-driven phase transition on the MoS2/GFNO heterostructures (Figure.1). 
We find that the 2H-1T’ phase transition shows a reversible and hysteretic loop in Raman spectra during 
electrical manipulation (Figure 2). we distinguish the vacancy and structure transition by Scanning 

Photoelectron Microscopy (SPEM) and μ-PES (Figure 3, Figure 4), the shift only happened in Mo 3d spectrum 
suggest the sulfur vacancy generate during annealing process; in addition, the surface potential of GFNO will be 
controlled after pulse-voltage applying, therefor, the binding energy (Mo 3d, S 2p, Gd 4f) shift simultaneously 
which is due to the different symmetric of d-orbital splitting in 2H and 1T’phase. The vacancy and ferroelectric 
induced phase transition were investigated by the core-level shift via scanning photoelectron microscopy. The 
ferroelectric control on the structural phase transition opens up possibilities for developing ferroelectric based 
devices such as 2D non-volatile memory devices or 2D NCFET devices.  
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Figure 1: Device schematic of the 2D MoS2/GdFeNiO3 heterostructure 
 
 
 

 
 

Figure 2: (Left) In-situ bias depend Raman spectrum (Right) Intensity ratio of 1T’ Raman spectrum 
 
 

 
 

Figure 3: X-ray photoemission spectra of Mo 3d, S 2s, and S 2p core-level. (left) For MoS2 on GFNO film annealed at 
various temperatures; (right) ex-situ pulse voltage applied after annealing. 

 

 
 

Figure 4: SPEM images and μ-PES measurements on the MoS2/GFNO homojunction. Mo 3d, S 2s, S 2p and Gd 4f core-
level photoelectron spectra measured with SPEM. (left) For MoS2 on GFNO film annealed at various temperatures; (right) 

Pulse voltage applied after annealing for MoS2/ GFNO heterostructure. 
 
 


